3.6.27 \(\int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx\) [527]

3.6.27.1 Optimal result
3.6.27.2 Mathematica [C] (verified)
3.6.27.3 Rubi [A] (verified)
3.6.27.4 Maple [A] (verified)
3.6.27.5 Fricas [B] (verification not implemented)
3.6.27.6 Sympy [F(-1)]
3.6.27.7 Maxima [F]
3.6.27.8 Giac [A] (verification not implemented)
3.6.27.9 Mupad [F(-1)]

3.6.27.1 Optimal result

Integrand size = 27, antiderivative size = 104 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=-\frac {\sqrt {3} \text {arctanh}\left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {3+3 \sin (e+f x)}}\right )}{\sqrt {d} (c+d)^{3/2} f}-\frac {3 \cos (e+f x)}{(c+d) f \sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))} \]

output
-arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^ 
(1/2)/(c+d)^(3/2)/f/d^(1/2)-a*cos(f*x+e)/(c+d)/f/(c+d*sin(f*x+e))/(a+a*sin 
(f*x+e))^(1/2)
 
3.6.27.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 4.57 (sec) , antiderivative size = 874, normalized size of antiderivative = 8.40 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \sqrt {3} \sqrt {1+\sin (e+f x)} \left (\frac {\left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((-1+i) x \cos (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1+i) d \sqrt {e^{-i e}} f x-(2-2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )-i \sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}+\frac {(1-i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2+2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-\sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3-2 i \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}{4 f}+(1+i) x \sin (e)\right )}{\sqrt {d} (c+d)^{3/2} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}+\frac {\left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((1-i) x \cos (e)-(1+i) x \sin (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1-i) d \sqrt {e^{-i e}} f x+(2+2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )+\sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 i \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}-\frac {(1+i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2-2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-i \sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3+2 \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] \sqrt {\cos (e)-i \sin (e)} (-1-i \cos (e)+\sin (e))}{4 f}\right )}{\sqrt {d} (c+d)^{3/2} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}-\frac {(2-2 i) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c+d) f (c+d \sin (e+f x))}\right )}{\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )} \]

input
Integrate[Sqrt[3 + 3*Sin[e + f*x]]/(c + d*Sin[e + f*x])^2,x]
 
output
((1/4 + I/4)*Sqrt[3]*Sqrt[1 + Sin[e + f*x]]*(((Cos[e/2] + I*Sin[e/2])*((-1 
 + I)*x*Cos[e] + (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & 
 , ((1 + I)*d*Sqrt[E^((-I)*e)]*f*x - (2 - 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^(( 
I/2)*f*x) - #1] - I*Sqrt[d]*Sqrt[c + d]*f*x*#1 + 2*Sqrt[d]*Sqrt[c + d]*Log 
[E^((I/2)*f*x) - #1]*#1 + ((1 - I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 + 2* 
I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - Sqrt[d]*Sqrt[c + d]* 
E^(I*e)*f*x*#1^3 - (2*I)*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[E^((I/2)*f*x) - # 
1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ]*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] 
 - I*Sin[e]])/(4*f) + (1 + I)*x*Sin[e]))/(Sqrt[d]*(c + d)^(3/2)*(Cos[e] + 
I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) + ((Cos[e/2] + I*Sin[e/2])*((1 - 
 I)*x*Cos[e] - (1 + I)*x*Sin[e] + (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E 
^((2*I)*e)*#1^4 & , ((1 - I)*d*Sqrt[E^((-I)*e)]*f*x + (2 + 2*I)*d*Sqrt[E^( 
(-I)*e)]*Log[E^((I/2)*f*x) - #1] + Sqrt[d]*Sqrt[c + d]*f*x*#1 + (2*I)*Sqrt 
[d]*Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 - ((1 + I)*c*f*x*#1^2)/Sqrt[E^( 
(-I)*e)] + ((2 - 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - I 
*Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 + 2*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[ 
E^((I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ]*Sqrt[Cos[e] - I*Sin[e 
]]*(-1 - I*Cos[e] + Sin[e]))/(4*f)))/(Sqrt[d]*(c + d)^(3/2)*(Cos[e] + I*(- 
1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) - ((2 - 2*I)*(Cos[(e + f*x)/2] - Sin 
[(e + f*x)/2]))/((c + d)*f*(c + d*Sin[e + f*x]))))/(Cos[(e + f*x)/2] + ...
 
3.6.27.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 3251, 3042, 3252, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a}}{(c+d \sin (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a}}{(c+d \sin (e+f x))^2}dx\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {\int \frac {\sqrt {\sin (e+f x) a+a}}{c+d \sin (e+f x)}dx}{2 (c+d)}-\frac {a \cos (e+f x)}{f (c+d) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin (e+f x) a+a}}{c+d \sin (e+f x)}dx}{2 (c+d)}-\frac {a \cos (e+f x)}{f (c+d) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}\)

\(\Big \downarrow \) 3252

\(\displaystyle -\frac {a \int \frac {1}{a (c+d)-\frac {a^2 d \cos ^2(e+f x)}{\sin (e+f x) a+a}}d\frac {a \cos (e+f x)}{\sqrt {\sin (e+f x) a+a}}}{f (c+d)}-\frac {a \cos (e+f x)}{f (c+d) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {d} f (c+d)^{3/2}}-\frac {a \cos (e+f x)}{f (c+d) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}\)

input
Int[Sqrt[a + a*Sin[e + f*x]]/(c + d*Sin[e + f*x])^2,x]
 
output
-((Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a* 
Sin[e + f*x]])])/(Sqrt[d]*(c + d)^(3/2)*f)) - (a*Cos[e + f*x])/((c + d)*f* 
Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x]))
 

3.6.27.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.6.27.4 Maple [A] (verified)

Time = 1.17 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.49

method result size
default \(-\frac {\left (\sin \left (f x +e \right )+1\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) \sin \left (f x +e \right ) a d +\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a c +\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (c +d \right ) d}\right )}{\left (c +d \right ) \left (c +d \sin \left (f x +e \right )\right ) \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(155\)

input
int((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x,method=_RETURNVERBOSE)
 
output
-(sin(f*x+e)+1)*(-a*(sin(f*x+e)-1))^(1/2)*(arctanh((-a*(sin(f*x+e)-1))^(1/ 
2)*d/(a*(c+d)*d)^(1/2))*sin(f*x+e)*a*d+arctanh((-a*(sin(f*x+e)-1))^(1/2)*d 
/(a*(c+d)*d)^(1/2))*a*c+(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2))/(c+d) 
/(c+d*sin(f*x+e))/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f
 
3.6.27.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 235 vs. \(2 (89) = 178\).

Time = 0.36 (sec) , antiderivative size = 786, normalized size of antiderivative = 7.56 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=\left [\frac {{\left (d \cos \left (f x + e\right )^{2} - c \cos \left (f x + e\right ) - {\left (d \cos \left (f x + e\right ) + c + d\right )} \sin \left (f x + e\right ) - c - d\right )} \sqrt {\frac {a}{c d + d^{2}}} \log \left (\frac {a d^{2} \cos \left (f x + e\right )^{3} - a c^{2} - 2 \, a c d - a d^{2} - {\left (6 \, a c d + 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} - {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )^{2} + {\left (c^{2} d + 3 \, c d^{2} + 2 \, d^{3}\right )} \cos \left (f x + e\right ) - {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} + {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {a}{c d + d^{2}}} - {\left (a c^{2} + 8 \, a c d + 9 \, a d^{2}\right )} \cos \left (f x + e\right ) + {\left (a d^{2} \cos \left (f x + e\right )^{2} - a c^{2} - 2 \, a c d - a d^{2} + 2 \, {\left (3 \, a c d + 4 \, a d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + 4 \, \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{4 \, {\left ({\left (c d + d^{2}\right )} f \cos \left (f x + e\right )^{2} - {\left (c^{2} + c d\right )} f \cos \left (f x + e\right ) - {\left (c^{2} + 2 \, c d + d^{2}\right )} f - {\left ({\left (c d + d^{2}\right )} f \cos \left (f x + e\right ) + {\left (c^{2} + 2 \, c d + d^{2}\right )} f\right )} \sin \left (f x + e\right )\right )}}, -\frac {{\left (d \cos \left (f x + e\right )^{2} - c \cos \left (f x + e\right ) - {\left (d \cos \left (f x + e\right ) + c + d\right )} \sin \left (f x + e\right ) - c - d\right )} \sqrt {-\frac {a}{c d + d^{2}}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {a}{c d + d^{2}}}}{2 \, a \cos \left (f x + e\right )}\right ) - 2 \, \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{2 \, {\left ({\left (c d + d^{2}\right )} f \cos \left (f x + e\right )^{2} - {\left (c^{2} + c d\right )} f \cos \left (f x + e\right ) - {\left (c^{2} + 2 \, c d + d^{2}\right )} f - {\left ({\left (c d + d^{2}\right )} f \cos \left (f x + e\right ) + {\left (c^{2} + 2 \, c d + d^{2}\right )} f\right )} \sin \left (f x + e\right )\right )}}\right ] \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="fricas")
 
output
[1/4*((d*cos(f*x + e)^2 - c*cos(f*x + e) - (d*cos(f*x + e) + c + d)*sin(f* 
x + e) - c - d)*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2* 
a*c*d - a*d^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 + 4*(c^2*d + 4*c*d^2 + 
3*d^3 - (c*d^2 + d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)*cos(f*x + 
 e) - (c^2*d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e)) 
*sqrt(a*sin(f*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2 
)*cos(f*x + e) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a* 
c*d + 4*a*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + 
d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2* 
cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + 
4*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1))/((c*d + d^2) 
*f*cos(f*x + e)^2 - (c^2 + c*d)*f*cos(f*x + e) - (c^2 + 2*c*d + d^2)*f - ( 
(c*d + d^2)*f*cos(f*x + e) + (c^2 + 2*c*d + d^2)*f)*sin(f*x + e)), -1/2*(( 
d*cos(f*x + e)^2 - c*cos(f*x + e) - (d*cos(f*x + e) + c + d)*sin(f*x + e) 
- c - d)*sqrt(-a/(c*d + d^2))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f 
*x + e) - c - 2*d)*sqrt(-a/(c*d + d^2))/(a*cos(f*x + e))) - 2*sqrt(a*sin(f 
*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1))/((c*d + d^2)*f*cos(f*x + e 
)^2 - (c^2 + c*d)*f*cos(f*x + e) - (c^2 + 2*c*d + d^2)*f - ((c*d + d^2)*f* 
cos(f*x + e) + (c^2 + 2*c*d + d^2)*f)*sin(f*x + e))]
 
3.6.27.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=\text {Timed out} \]

input
integrate((a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**2,x)
 
output
Timed out
 
3.6.27.7 Maxima [F]

\[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a}}{{\left (d \sin \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="maxima")
 
output
integrate(sqrt(a*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^2, x)
 
3.6.27.8 Giac [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.29 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=-\frac {\sqrt {2} \sqrt {a} {\left (\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sqrt {-c d - d^{2}} {\left (c + d\right )}} + \frac {2 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{{\left (2 \, d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c - d\right )} {\left (c + d\right )}}\right )}}{2 \, f} \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="giac")
 
output
-1/2*sqrt(2)*sqrt(a)*(sqrt(2)*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2 
*e)/sqrt(-c*d - d^2))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/(sqrt(-c*d - d^2 
)*(c + d)) + 2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 
 1/2*e)/((2*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 - c - d)*(c + d)))/f
 
3.6.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx=\int \frac {\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c+d\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

input
int((a + a*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x))^2,x)
 
output
int((a + a*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x))^2, x)